Managing Unplanned Rail Disruptions: Policy Implications and Guidelines Towards an Effective Bus Bridging Strategy

Transportation Research Board, 98th Annual Meeting

Alaa Itani (alaa.itani@mail.utoronto.ca), Aya Aboudina Ehab Diab, Siva Srikukenthiran and Amer Shalaby

Introduction

- Public transit is an essential service for any city
- When **unexpected interruptions** occur, they reduce the quality of service provided to the public and affect negatively user experience
- Thus, transit agencies implement several **disruption management strategie**s to mitigate the impact of unexpected disruptions and incidents on user delays

Bus Bridging Strategy

Work Phases

User's Delay Modelling Tool (UDMT)

User Delay Modelling Tool Methodology

1) Shuttle Bus Trip Tracking

Deadhead time (I)

User Delay Modelling Tool Methodology (Cont.)

2) Metro Passengers Queue Evolution

of Passengers

Actual Disruptions from TTC Subway Network

- Major incidents that had long durations and disrupted segment lengths.
- Incidents that happened on different lines of the system.
- Incidents that started and ended during the AM peak period, for its significance due to the high passenger volumes.

Policy Analysis and Implications

Initial Dispatch Direction: Tested Strategies

50% Random	50% Distance	Clo S	sest End tation	Demand at End Stations	Directional Demand
 Shuttle buses are assigned equally to both end stations in an ad-hoc procedure. 	 Shuttle buses are assigned equally to both end stations while considering the proximity of the bus route terminal to the assigned end station. 	 Shut are a the o stati cons ratio assig each stati 	ttle buses assigned to closest end on, without idering the of buses gned to end on.	 Shuttle buses are assigned proportionally to the demand at end stations, i.e., more shuttle buses start the shuttle service at the more congested end station. 	 Shuttle buses are assigned proportionally to the directional demand, i.e., considering the combined demand of all stations per direction.

Initial Dispatch Direction: Results1) Metro Passengers' Delay (*Passenger-hr.*)

Closest End Demand at Directional

End Stations Demand

13100

13000

12900

50%

Random

50%

Distance

station

Initial Dispatch Direction: Results

2) Shuttle Buses utilization efficiency (*Percentage of On-Shuttle Service Time*)

Policy Analysis and Implications

Dispatch Time of Shuttle Buses

Long dispatch times increase the gap between the incident start time and the time at which shuttle buses arrive at the disrupted segment

The dispatch time is quantified through 1 min increments in the dispatch time from 0 to 5 mins.

Average extra waiting time Metro passengers' delay

Dispatch Time of Shuttle Buses: Results

1) Average Extra waiting time

Increase by around <u>0.41 min</u> for each minute increase in the dispatch time. This entails substantial increase in the aggregate *delays of all metro passengers* affected by the disruption.

Dispatch Time of Shuttle Buses: Results 2) Metro Passengers' Delay

1-minute increase in the dispatch time brings an increase of around <u>145 passenger-hr</u>. in the incident involving Union station, which is the highest value observed among all incidents. This observation is because this closure involves the **highest demand**.

Policy Analysis and Implications

Uncertainty in Predicting Incident Duration

Uncertainty in Predicting Incident Duration: Results 1) Metro Passengers' Delay

Uncertainty in Predicting Incident Duration: Results 2) Shuttle Buses Utilization

Policy Analysis and Implications

Demand Reduction

In response to a disruption, some affected metro passengers might switch to other functioning transit lines or modes, based on either their experience with the transit system or as a result of directions given by the transit agency.

Demand Reduction: Results

Metro Passengers' delay

The savings in metro passenger delay curve has a logarithmic trend, which means reduction in demand brings *larger* percentage saving in metro passenger delays

Conclusion and Recommendations

Dispatch Direction

Maximize the utilization efficiency of shuttle buses.

Consider the demand profile over the disrupted metro segment

Dispatch Time

Dispatching shuttle buses earlier by 1 min saves, on average, 0.4 min/passenger at the disrupted stations. Uncertainty in Predicting Incident Duration

High forecasting errors could result in significant disutility

There's a need for accurate prediction models Demand Reduction

Directing passengers to other transit lines during disruption can achieve major savings in user delays.

What's Next?

- Paper describing in details the methodology of the User's Delay Modelling Tool CASPT link:
- Current paper link available on: